
Microserviços Supersônicos
e Subatômicos com

Quarkus
Pedro Hos and William Siqueira

Pedro Hos @ github.com/pedro-hos

● Banco de Dados @ FATEC São José dos Campos
2012

● I’ve worked as Java Developer in some companies
● Since 2017 I am Software Maintenance Engineer @

Red Hat
● JUG Leader at JUG Vale jugvale.com
● Contributor at SJCDigital github.com/sjcdigital
● Blogger at pedrohosilva.wordpress.com
● Opensource and some source code samples

github.com/pedro-hos

http://jugvale.com
http://github.com/sjcdigital
http://pedrohosilva.wordpress.com
http://github.com/pedro-hos

William Siqueira @ github.com/jesuino

● Banco de Dados @ FATEC São José dos Campos
2010

● Software Engineer @ Red Hat
● Colaborador do JUG Vale jugvale.com
● Colaborador do SJCDigital github.com/sjcdigital
● Escreve em alguns blogs
● Palestrante JavaOne, The Developers Conference,

FISL e outros
● Opensource github.com/jesuino

https://jugvale.com/
http://github.com/sjcdigital
http://github.com/jesuino

Schedule
● Microservices overview
● Java and microservices
● Eclipse Microprofile
● Quarkus - numbers

○ First demo
■ Add hello endpoint - play with configuration - add json - add health check
■ add swagger - fault tolerance

● Quarkus features
○ Extensions - talk about all extensions
○ Second Demo - Database - security
○ Kogito Demo

● Quarkus Native - talk about how quarkus can be compiled to native
● Quarkus on Openshift/Kubernetes

What are microservices
Microservices - also known as the microservice architecture - is an architectural
style that structures an application as a collection of services that are

● Highly maintainable and testable
● Loosely coupled
● Independently deployable
● Organized around business capabilities
● Owned by a small team

The microservice architecture enables the rapid, frequent and reliable delivery of
large, complex applications. It also enables an organization to evolve its
technology stack.

Reference: microservices.io

https://microservices.io

What are microservices

Microservices ecosystem
● Microservices are usually packaged in containers

○ Docker is a famous container solution

● Containers are used in production with a container orchestrator
○ Kubernetes is the most used container orchestrator solution

● Other tools are built for containers security, testing, monitoring and more
○ Around the microservices containers and infrastructure new tools can be used such as Istio,

Prometheus...

Creating microservices with Java
● JakartaEE

○ Was known as Java EE before
○ Java Specification for Enterprise applications
○ Usually requires application server
○ Open specification focused in backwards compatibility (slow evolution)

● Spring boot
○ Not a specification
○ Unique vendor
○ FAT Jars approach

● Other libraries and frameworks
○ Play, Micronaut, Spark...
○ The list goes on… We need a specification for Java microservices

Are all these libraries ready for use with microservices ecosystem?

Eclipse Microprofile

● Microservices Specification
○ Healthcheck
○ Circuit breaker
○ Fault Tolerance
○ API Documentation

● Focus on fast releases and innovation -
● May not have backwards compatibility
● Between Microservices implementations we have Quarkus

microprofile.io

Quarkus.io

Quarkus #Facts
❏ Container First

❏ Ready for Docker and Kubernetes

❏ 10x lighter
❏ The final JAR is optimized during and is faster than usual applications

❏ 100x faster
❏ Can be compiled to a native package, resulting in high performance applications

❏ Low memory usage and fast Startup
❏ Live Reload

❏ Run Quarkus in development and your changes are automatically reloaded, no need to server
stop/start

❏ Microservices
❏ Implements and extends Microprofile with Quarkus Extensions, built on top of mature libraries

❏ Developer Joy

How fast is Quarkus

it is supersonic, subatomic Java

Let’s code...

All source code are on github:
https://github.com/pedro-hos/javaee-pocs/tree/master/microservices/quarkus/tdc-recife-2019/quarkus-tdc-recife

https://github.com/pedro-hos/javaee-pocs/tree/master/microservices/quarkus/tdc-recife-2019/quarkus-tdc-recife

Start Coding
● https://code.quarkus.io/
● Fill the Group and Artifact
● Choice the Extensions
● Download and run the application:

○ ./mvnw compile quarkus:dev

● Play with Configurations @ConfigProperty(...)
● List extensions and add JSON extension
● Add health check extension and hit the /health
● Create a new HealthCheck with @Liveness
● Add openAPI extension and add the property:

○ quarkus.swagger-ui.always-include=true

https://code.quarkus.io/

Start Coding
● Add fault tolerance extension
● Create a new resource to test fault tolerance

○ Test @Retry
○ Test @Timeout
○ Test @Fallback

● Configure MySQL Database
● Configure Keycloak security

And much more
● Reactive APIs

○ Vert.x, REST, Messaging and database drivers (Postgres and MySQL)

● Cloud
○ Serverless with AWS Lambda, Kubernetes

● Other Languages
○ You can develop Quarkus applications using Scala and Kotlin

● Messaging
○ Kafka, AMQ, MQTT, Artemis and Microprofile Messaging

● Business Automation
○ Kogito brings Drools and jBPM to Quarkus

● Misc
○ Email, Apache Tika, JGit, tasks scheduling and more to come

● Spring (!!!)

Quarkus Cheat Sheet -> https://lordofthejars.github.io/quarkus-cheat-sheet

https://lordofthejars.github.io/quarkus-cheat-sheet

Questions?

